Current Issue : April-June Volume : 2025 Issue Number : 2 Articles : 5 Articles
Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an online data server. Specialist doctors can access this data as needed, allowing them to assess the patient’s initial condition and provide advice at any time. This approach enhances the quality and reach of health services. The module, designed and installed using modern technology, minimizes latency and maximizes data accuracy while reducing delay and battery drain. An accompanying app motivates public acceptance and ease of use. Various sensors, including ECG, SpO2, gyroscope, PIR, temperature-humidity, and BP, collect data processed by an Arduino microcontroller. Data transmission is handled by a WiFi module, with ThingSpeak and Google Sheets used for data processing and storage. The system has been fully tested, and patient data from two hospitals compared with the proposed model shows 97% accuracy....
The visual fidelity of virtual reality (VR) and augmented reality (AR) environments is essential for user immersion and comfort. Dynamic lighting often leads to chromatic distortions and reduced clarity, causing discomfort and disrupting user experience. This paper introduces an AI-driven chromatic adjustment system based on a modified U-Net architecture, optimized for real-time applications in VR/AR. This system adapts to dynamic lighting conditions, addressing the shortcomings of traditional methods like histogram equalization and gamma correction, which struggle with rapid lighting changes and real-time user interactions. We compared our approach with state-of-the-art color constancy algorithms, including Barron’s Convolutional Color Constancy and STAR, demonstrating superior performance. Experimental results from 60 participants show significant improvements, with up to 41% better color accuracy and 39% enhanced clarity under dynamic lighting conditions. The study also included eye-tracking data, which confirmed increased user engagement with AI-enhanced images. Our system provides a practical solution for developers aiming to improve image quality, reduce visual discomfort, and enhance overall user satisfaction in immersive environments. Future work will focus on extending the model’s capability to handle more complex lighting scenarios....
Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied loads, sliding speeds, service temperatures, and water lubrication were studied and analyzed in detail. The results indicated that the tribological properties of CFRP were predominantly influenced by the applied loads, as the tangential displacement generated significant shear stress at the interface of the friction pair. Serviced temperature was the next most impactful factor, while the influence of water lubrication remained minimal. Moreover, when subjected to a load of 2000 g, the wear rate and scratch width of the samples exhibited increases of 158% and 113%, respectively, compared to those loaded with 500 g. This observed escalation in wear characteristics can be attributed to irreversible debonding damage at the fiber/resin interface, leading to severe delamination wear. At elevated temperatures of 100 ◦C and 120 ◦C, the wear rate of CFRP increased by 75% and 112% compared to that at room temperature. This augmentation in wear was attributed to the transition of the epoxy resin from a glassy to an elastic state, which facilitated enhanced fatigue wear. Furthermore, both sliding speed and water lubrication displayed a negligible influence on the friction coefficient of CFRP, particularly under water lubrication conditions at 60 ◦C, where the friction coefficient was only 15%. This was because the lubricant properties and thermal management provided by the water molecules, which mitigated the frictional interactions, led to only minor abrasive wear. In contrast, the wear rate of CFRP at a sliding speed of 120 mm/s was found to be 74% greater than that observed at 60 mm/s. This significant increase can be attributed to the disparity in sliding rates, which induced uncoordinated deformation in the surface and subsurface of the CFRP, resulting in adhesive wear....
The increasing global demand for raw materials underscores the importance of lightweight construction and sustainable material use, drawing attention to composite techniques like galvanic coating of plastics. To support recycling efforts, the development of efficient separation and material recovery processes is critical, particularly for end-of-life products containing metal-plated polymers. This study investigates the recyclability of metallized polymer foams and coated polymers through comminution, focusing on the potential for effective separation of metal and polymer components. Cu-ABS samples showed 27% of the products in the 8–10 mm fraction and 48% in the 10–16 mm fraction during primary comminution, while Cu-PUR achieved a more even distribution. Microscopic analyses revealed decoating rates of up to 95% for Cu-ABS compared to 19% for Cu-PUR. The comminution energy required for Cu-PUR was three times higher, with a fivefold lower decoating rate than solid materials. Particles larger than 200 μm exhibited interlocking, complicating the separation process. These findings highlight the need for optimized recycling processes to enable efficient raw material recovery and support a circular economy....
Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay initial profile over an infinite spatial domain. For each solution, the temporal evolution of the number of particles at a fixed distance has been analyzed. The anticorrelation between the flux of CRs and the magnetic field at one astronomical unit has been explained by adopting a careful choice of the astrophysical parameters involved....
Loading....